Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
نویسندگان
چکیده
Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34 ± 4 mA/m(2). Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs.
منابع مشابه
Heat-Treated Stainless Steel Felt as a New Cathode Material in a Methane-Producing Bioelectrochemical System
Methane-producing bioelectrochemical systems (BESs) are a promising technology to convert renewable surplus electricity into the form of storable methane. One of the key challenges for this technology is the search for suitable cathode materials with improved biocompatibility and low cost. Here, we study heat-treated stainless steel felt (HSSF) for its performance as biocathode. The HSSF had su...
متن کاملEnrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes.
Electron-accepting (electrotrophic) biocathodes were produced by first enriching graphite fiber brush electrodes as the anodes in sediment-type microbial fuel cells (sMFCs) using two different marine sediments and then electrically inverting the anodes to function as cathodes in two-chamber bioelectrochemical systems (BESs). Electron consumption occurred at set potentials of -439 mV and -539 mV...
متن کاملEffect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes
The enrichment of CO2-reducing microbial biocathodes is challenging. Previous research has shown that a promising approach could be to first enrich bioanodes and then lower the potential so the electrodes are converted into biocathodes. However, the effect of such a transition on the microbial community on the electrode has not been studied. The goal of this study was thus to compare the start-...
متن کاملBioanodes/biocathodes formed at optimal potentials enhance subsequent pentachlorophenol degradation and power generation from microbial fuel cells.
Bioanodes formed at an optimal potential of 200 mV vs. SHE and biocathodes developed at -300 mV vs. SHE in bioelectrochemical cells (BECs) enhanced the subsequent performances of microbial fuel cells (MFCs) compared to the un-treated controls. While the startup times were reduced to 320 h (bioanodes) and 420-440 h (biocathodes), PCP degradation rates were improved by 28.5% (bioanodes) and 21.5%...
متن کاملAccelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems.
Biocatalyzed electrolysis systems (BES) have been the topic of a great deal of research. However, the biocathodes formed in single-chamber BES without extra inocula have not previously been researched. Along with the formation of biocathodes, the polarization current increased to 1.76 mA from 0.35 mA of abio-cathodes at -1.2 V (vs. SCE). Electrochemical impedance spectroscopy (EIS) results also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biotechnology
دوره 168 4 شماره
صفحات -
تاریخ انتشار 2013